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Abstract: This paper looks into classification of documents that have 
hierarchical labels and are not restricted to a single label. Previous work in 
hierarchical classification focuses on the hierarchical perceptron (Hieron) 
algorithm. Hieron only supports single label learning. We investigate applying 
several standard multi-label learning techniques to Hieron. We then propose an 
extension of the algorithm (MultiHieron) that significantly outperforms all 
previously mentioned techniques. MultiHieron has a new aggregate loss 
function for multiple labels. Improvement is shown on the Aviation Safety 
Reporting System (ASRS) flight anomaly database and OntoNews corpus using 
both at and hierarchical categorisation metrics. 
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1 Introduction 

Classification is a method of assigning a label to some target given relevant information 
about the target. A classification system can generate models using information from the 
world to perform classification. Many classification systems have been constructed to suit 
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different machine learning tasks. This paper deals with two specific classification 
problems that are not normally addressed: multi-label and hierarchical label 
classification. 

A hierarchical label is one that can be ordered in some sort of tree structure. In our 
case, we consider labels that explicitly state the tree structure. For example, lets make up 
two labels, say ‘A: B: C’ and ‘A: B: D’. This would form a tree with the root node, ‘A’, a 
single child of the root, ‘B’ and two children for ‘B’, ‘C’ and ‘D’. These labels can be 
treated used in systems that do not utilise their hierarchical structure but they contain 
additional information that has been shown to produce good results in specialised 
algorithms. 

In multi-label systems, a document can have any number of labels attached to it. Most 
systems only accept one label per training document. For example, a news article can 
only be in one section of the newspaper. However, there are many real life sources that 
have multiple labels. If we attempt to train a document with multiple labels, the system 
may become confused and the performance will suffer as a result. For example, the 
NASA Aviation Safety Reporting System (ASRS) flight anomaly database is multi-label, 
with an average of 2.7 labels per anomaly report. 

The ASRS flight anomaly database consists of free-form text documents. Each 
document can have multiple labels that reside to a structured hierarchy. This hierarchy is 
three levels deep containing 13 major classes and 55 minor classes. The following is an 
example anomaly report to illustrate the difficulty in evaluating these flight reports. This 
report contains three labels: ‘aircraft equipment problem: less severe’, ‘other spatial 
deviation’ and ‘non-adherence: clearance’. 

“Cleared direct private very high frequency omni directional radio range after 
takeoff bos. Using right navigation flight management system and omega bos 
center advised we missed private very high frequency omni directional radio 
range by 20 miles. Upon checking found both flight management system and 
omega in gross error...” 

The most recent and relevant work in hierarchical classification comes from Dekel et al. 
(2004). Dekel et al. (2004) propose a large margin hierarchical perceptron algorithm. It 
was shown to produce good results at entire document classification when document 
class labels were hierarchical in nature. Previous work with this algorithm focused only 
on single label learning. It has not been shown to work well if more than one class label 
exists. We extend this to do multiple label anomaly classification by performing 
simultaneous updates. 

In our proposed algorithm, the system performs multi-label training. When the system 
is presented with a document, it returns the list of all possible labels attached to weights. 
Typically, we would simply take the highest weighted member of this list as our 
predicted label. To do multi-label training, we use the highest n  weighted labels and 
compare this to the true set of labels attached to the document (Woolam and Khan, 2008). 
Large margin classifiers make use of loss function that reports the severity of error made 
by a given prediction. The Hieron loss function is hierarchical, it took the labels tree 
structure into account, but not multi-label. It could only do one-to-one loss reporting. We 
develop a many-to-many loss function that takes into account hierarchical information. 
Updates are performed simultaneously. We then study this algorithm operating in batch 
mode including other alterations for better performance. 
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The paper is organised in the following way. Section 2 discusses previous work in 
multi-label classification and large margin classifiers. Section 3 describes the traditional 
Hieron algorithm as has been explored in previous work. Section 4 describes a new, more 
general algorithm, capable of learning multiple concepts at a time for one document. 
Section 5 discusses batch operation of the algorithm with performance modifications. 
Section 6 discusses the database and provides evidence that learning with the new 
algorithm improves on learning in the single document case. Section 7 discusses 
conclusions and explores future possibilities for this research. 

2 Related work 

This paper builds on a major body of work from several different areas in classification, 
particularly a large margin hierarchical perceptron presented in Dekel et al. (2004). The 
study begins with looking at hierarchical label classification, and then we explore large 
margin classifiers and performing large margin hierarchical label classification and 
finally analysis of current known approaches to multi-label classification. Much work has 
been done in hierarchical classification, including (Koller and Sahami, 1997; McCallum 
et al., 1998; Weigend et al., 1999; Dumais and Chen, 2000). Many approaches to 
hierarchical classification have focused on rephrasing their problem so that it could be 
implemented using already existing algorithms. A classifier could be trained for each 
vertex in the hierarchy and then some additional mechanism could be implemented to 
account for linkages between points in the hierarchy. 

Large margin classifiers had become popular and had received major attention 
(Vapnik, 1998). Early large margin work (Herbster, 2001; Crammer et al., 2003) was 
very successful and provided a framework for which to build algorithms. Dekel et al. 
(2004) applied these large margin design principals to a hierarchical label system to 
create a large margin hierarchical perceptron called Hieron. They decided that their 
algorithm needed to be lightweight and efficient. Due to hierarchical nature, errors can be 
treated differently depending on proximity to the true label. Predicting a sibling would 
not be as bad as predicting a node in a completely separate part of the tree. Online large 
margin classification systems have defined margin constraints by which the systems 
hypothesis must comply. Updates are made such that their effect is minor. Online large 
margin classifiers can be converted to batch classifiers (Cesa-Bianchi et al., 2004). Li and 
Bontcheva (2007) demonstrated promising results by applying this algorithm to  
ontology-based information extraction. Classifiers can be used to perform information 
extraction (Freitag, 1999). Large margin hierarchical perceptron was shown to 
outperform perceptron with uneven margins and uneven margins support vector machine, 
which produced good results (Li et al., 2005). Hierarchical classifiers have specific 
performance analysis metrics (Maynard et al., 2006). None of these considers training for 
multi-label data. On the other hand, our approach is a simultaneous multi-label update 
strategy for a large margin hierarchical perceptron. 

A holistic overview of current multi-label classification techniques was outlined by 
Tsoumakas and Katakis (2007). In the case of non-binary classifiers, we can perform any 
one of a number of dataset transformations. It is explicitly stated that they do not deal 
with multi-label hierarchical classification problems. Two of their transformations were 
useful to us. One method only uses training instances that are attached to one level. This 
reduces the size of the dataset. We call this the single label (SL) method. In another 
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method, a multi-label document with n labels can be treated as if it were n separate 
single-label documents. We call this the serial method. 

3 Hierarchical perceptron algorithm 

The large margin hierarchical perceptron algorithm is named Hieron. In this section, we 
will briefly describe the algorithm as it was first presented as a fully developed online 
Hieron algorithm. This algorithm was designed for single-label classification. To describe 
the algorithm, we first establish some definitions. Labels are hierarchical and each has a 
corresponding weight that is a vector of real numbers,  where . We 
superscript the weight vector with the label name to denote a label’s weight. We call Y 
our set of all class labels. To refer to a set of all class labels from the top of the hierarchy 
to a given label we say P(v). We classify a vector of real numbers called x. Finally, 
predictions are made according to the rule in equation (1). For every possible label, we 
sum all of the weights from the top of the hierarchy to that label, then we multiply it by 
our instance. The largest summation is the prediction. We call the numerical value 
produced from this summation the corresponding prediction weight. 

w ∈v n

⋅

Y∈v

( )

( ) arg max w x
Y P

f
∈ ∈

= ∑ u

v u v

x  (1) 

Next, we need to train the weights in the system. Initially they are set to zero. At each 
time step i, we query the system for a prediction, , of instance x. The error is the ‘tree 
distance’, or the shortest path from a predicted label to its corresponding true label. Error 
is denoted by . Equation (2) defines margin conditions for the weight vectors. 

These margin conditions state that there exists a set of weights, { }

ŷ

ˆ( , )y yγ

∈
v

v yω , such that for all 

instance-label pairs, x and y, in the training set the difference between our prediction 

weight of our correct label, y and our predicted label, , will be greater than the square 
root tree error. We denote r to be any possible label. 

ŷ

( ) ( )

x x (
P P

−

∈ ∈

⋅ ⋅ ≥∑ ∑
i

v u
i i

v y u r

y rω ω γ , )i  (2) 

From this, we have a loss function that forms the basis for our update, 

,

( ) ( )

({w }, x ) w x w x ( , )
P P

L − +

∈ ∈

= ⋅ ⋅∑ ∑
i

v v u
i i i i i

v y u r

y γ y r  (3) 

Algorithm 1 is the basic online Hieron algorithm that has been subject to formal analysis. 
In line 1, we iterate through our entire training set, which has m training instances. On 

each iteration, we have a new (wi,yi). A prediction is made in line 3. If it is correct, no 
update is made on lines 7 or 10, if false, then only relevant nodes are updated. Updates 
are made using an update rule derived by Dekel et al. (2004). This update rule uses a loss 
function from equation (3). Using Lagrange multipliers, we find the optimal update 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Multi-label large margin hierarchical perceptron 9    
 

policy, denoted above by alpha. This process is described in Section 4.1 using different 
margin conditions. 

Algorithm 1 Online Hieron 

Require:  0: w 0, 0Y∀ ∈ = =vv i

1 for  to m  do 1=i

2 {training instance x  and corresponding label } i iy

3  ( )ˆ arg max w x∈
∈

← ⋅∑ v
v P y i i

y Y
y

4 
v ,i

2
({w }, x )

ˆ( , ) x

L
α ← i i

i
i i

y

y yγ
 

5 for v  in Y do 

6 if  then ˆ( ) \ ( )P P∈v y y

7  ,1w w xα+ ← +v v
i i i i

i

8 end if 

9 if  then ˆ( ) \ ( )P P∈v y y

10  ,1w w xα+ ← +v v
i i i

11 end if 

12 end for 

13 end for 

4 Multi-label hierarchical perceptron 

The Hieron algorithm has shown promising results for the SL classification problem. 
There are many cases where we need to do multi-label classification. In the semantic 
web, for instance, entities are expected to have multiple relationships between each other. 
Hieron performs prediction by generating a prediction weight for all labels. Instead of 
using the single highest prediction weight, we simply use the top n. 

To illustrate training approaches, consider the following three methods of training a 
dataset that has the characteristics of being multi-label and hierarchical with Algorithm 1. 

• Hieron-SL method will only train SL documents. This method will not work if there 
are no documents which are attached to a single label in the database. 

• Hieron-serial method can be used to a train multi-label documents described by 
Algorithm 1. Intuition indicates problems with this method. The original algorithm 
was attempting to solve a problem framed in terms of one prediction label for one 
true label, not multiple labels, so our update rule may not work well. Also, we could 
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have a case where we erase important information when updates are made for 
different labels on the same document as the following example shows. 

In Figure 1, we have a document that has two labels. Figure 1(a) shows how we may 
have an undesirable update case by repeating predictions in serial mode. The bottom right 
node represents the correct label (y) and its sibling represents the predicted node ( ). 
This is incorrect, so the weights on the true node will be rewarded (denoted by +) while 
the weights on the prediction will be punished (denoted by –). Because they share the 
same parent, no other nodes need be updated. When queried for another prediction, it 
makes what would be the correct label in Step 1, but is the incorrect label for Step 2. 
Here, the left-most leaf node and second right most leaf node are predicted and the true 
class, respectively [tree in Figure 1(a)]. Updating now cancels out half of the information 
we added to the system in Step 1. It is also expensive, six nodes have been updated in the 
process of training one document. 

ŷ

Figure 1 Example of learning weights for the same document containing two labels, (a) serial 
Hieron learning (b) MultiHieron learning (see online version for colours) 

 
(a) 

 
(b) 

Figure 1(b) breaks from conventional models to provide a simultaneous update strategy. 
Only four updates are made, on each of leaf node in the tree. Both predictions are 
incorrect, but appear as siblings of the true values, therefore only those nodes need be 
adjusted and the rest of the tree remains untouched. In other words, left most leaf and 
second right most leaf nodes are rewarded; second most leaf and right most leaf nodes are 
punished. As the following sections will demonstrate, not only does this method 
intuitively feel better, but also it is advantageous in several ways. By updating everything 
in one shot, we are taking into account all information available for a more complete 
result. By making multiple predictions at once, we end up making fewer weight updates. 
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4.1 Proposed algorithm: MultiHieron 

To develop a better algorithm, the problem must be redefined in multi-category terms. 
The new algorithm will assume that, for all instance-label pairs (xi, yi) in the training set 
and r ⊂ Y such that at least one \ yY∈j ir , the following margin requirements hold 

y ( ) r ( )

x x
P P

−

∈ ∈ ∈ ∈

⋅ ⋅ ≥∑ ∑ ∑ ∑
i

v u
i i

z v z q u r

ω ω (y, r)γ  (4) 

From here and taking a similar approach to the method used by Dekel et al. (2004), we 
will craft MultiHieron, the multi-category hierarchical perceptron algorithm. First, notice 
that our tree distance function has changed characteristics slightly. We now denote 

 to be (V, U)γ

V U
(V, U) ( ) ( )P P

∈ ∈
= ∪ ∪

v u
vγ u  (5) 

Note that ∆ denotes the symmetric difference (A∆B = (A\B) (B\A)) between sets. For 
example, Figure 1 shows three trees. The size of symmetric difference between the paths 
to the two points is 2 for the top left and 4 for both the top right and bottom trees. 
Following this, we define our multi-label loss function to be 

∪

v ,i
y ( ) r ( )

({w }, x y ) w x w x (y , r)
P P

L −

∈ ∈ ∈ ∈

= ⋅ ⋅ +∑ ∑ ∑ ∑
i

v u
i i i i i i i

y v y r u r

γ  (6) 

To control learning by ensuring that the margin requirement is met but also keeping the 
updated weights close to the previous, we follow the method provided by Dekel et al. 
(2004) and say, 

2

{w } ˆˆ ˆy ( ) y ( )

1 ˆmin w – w w x w x (y , y )
2 Y P P

−

∈ ∈ ∈ ∈ ∈

⋅ ⋅ ≥∑ ∑ ∑ ∑ ∑v

i i

v v v u
i i i

v y v y y u y

s.t. γ i i  (7) 

We can solve this condition using Lagrange multipliers, αi  and perfrom some 
optimisation to get: 

,
2

({w }, x y )
ˆ(y , y ) x

L
α =

v
i i i

i
i i iγ

 (8) 

Algorithm 2 is similar to Algorithm 1. We iterate through every one of the m instances in 
the training set in line 1. During each iteration, line 3 gets yi  predictions and lines 7 and 
10 perform weight updates if necessary. Line 3 generates multiple prediction labels, 
instead of a SL. Line 4 is significantly different where we use equation 6 instead of 
equation 3. Our update rule contains a different path symmetric difference formula, 
equation 5. Also, we update each relevant prediction and true class group in lines 7 and 
10. 
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Algorithm 2 Online MultiHieron 

Require:  0: w 0, 0Y∀ ∈ = =vv i

1 for  to m  do 1=i

2 {training instance x  and corresponding label } i yi

3 ( )ŷ arg max( y ) w x∈
∈

← ⋅∑ v
i v P y i

y Y
i  

4 
v ,i

2
({w }, x y )

ˆ(y , y) x

L
α ← i i

i
i iγ

 

5 for v  in Y do 

6 if  then y y (y)P∈∈∪
i

v

7  ,1 xα+ ← +v v
i i iw w i

i

8 end if 

9 if  then ˆ ˆy y ˆ(y)P∈∈∪
i

v

10  ,1 xα+ ← +v v
i i iw w

11 end if 

12 end for 

13 end for 

4.2 Analysis of MultiHieron 

MultiHieron is more general than the original. It can be trivially shown that MultiHieron 
will reduce to Hieron on any SL categorisation problem. If  and r have maximum size 
of 1 for all i , then , the symmetric difference of the path to only two 
labels. All training, updates and predictions will remain the same. 

yi

(y , r) ( , )=i iy rγ γ

Dekel et al. (2004), provide a theorem that implied that the cumulative loss suffered 
by online Hieron is bounded as long as the margin requirements are satisfied. In Theorem 
4.1, we show that this also holds for MultiHieron. 

Theorem 4.1: Let  be a sequence of examples where  and . 

Assume there exists a set 

, 1{(x y )} =
m

i i i x ∈ n
i y Y∈i

{ : }∀ ∈u v yω  that satisfies the margin condition for all 
. Then, the following holds, 1≤ ≤i m

22 ,

1

({w }, x ) w
Y

L
= ∈

≤∑ ∑
m

v v
i i i max

i v

Rγy 2  (9) 

where for all , x ≤ii R  and ˆ(y , y ) ≤i i maxγ γ . 
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Proof: Define ω  to be a concatenation of all vectors in {  and, likewise, }vω wi  in the 
same manner. The squared distance, δi  is 

2 2
1w wδ − −+= −i i iω ω  

Now we can get upper bounds and lower bounds on δi  over all i by, 

2 2
1

1 1
2 2

1
2

1
22

w w

w w
w

δ − −+
= =

− −

−

∈

= −

= −
≤

≤ =

∑ ∑

∑

m m

i i i
i i

m

v

v Y

ω ω

ω ω
ω

ω ω

 

Thus, we have our upper bound on all [1, ]δ∈∑ i m i . 

To get our lower bound, use the minimiser of equation (7) producing a result 1w +i . 
Using a theorem (Censor and Zenios, 1997)(Theorem 2.4.1), we have the following 
inequality, 

2 2
1 1w w w w− − −+ +− ≥i i iω ω 2

i  

So, 2
1w wδ − +≥i i i . After updates, only weights  are updated if 

 which means, 

wv
i

ˆˆy y ˆ( ) ( )P∈ ∈∈∪ ∪i iy yv y P y

ˆˆy y

2 2
1 1

ˆ( ) ( )

w w w w w w
Y P P

∈ ∈

− − −+ +
∈ ∈

= =∑ ∑
∪ ∪

y yi i

i i i i i i
y v y y

2
1+  

Now we can use the update rule to get, 

ˆˆy y

22 22 2
1

ˆ( ) ( )

ˆw w x (y , y ) x
P P

α α

∈ ∈

− +
∈

= =∑ ∑
∪ ∪

y yi i

i i i i i i i i
v y y v

γ  

Plugging in equation (8), 
2 2, ,

2 2
({w }, x ) ({w }, x )

ˆ(y , y ) x

L L
δ = ≥

v v
i i i i i i

i
maxi i i

y y

Rγγ
 

So, 

2 2,
2

1 1

({w }, x )

Y

L
δ

= =

≤ ≤∑ ∑
m mv

vi i i
i

maxi i

y

R
ω

γ ∈
∑
v

 

Finally, we distribute variables around, 
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22 2,

1

({w }, x y )
Y

L
= ∈

≤∑ ∑
m

v v
i i i max

i v

Rω γ  

4.3 Batch MultiHieron with performance enhancements 

We have presented and analysed an online large margin classifier. It has been shown that 
conversion from online to batch mode produces better results (Dekel et al., 2004). 
Operation in batch mode gives no guarantee for margin conditions that were the basis for 
our update rule (Cesa-Bianchi et al., 2004). First, we use time averaged weight vectors in 
prediction. Once training is complete for m documents, vector weights are represented as 
equation (10). 

1

1

1w
1

+

=

=
+ ∑

m
u

i
i

m
wv  (10) 

Previous batch Hieron implemented average weight system and changed the training 
goal. The batch Hieron trained the labels that maximised the loss function, equation (3), 
instead of updating the label that would be predicted. This increases the margin 
drastically but does not work well in any multi-label operation. In addition, doing this 
was very computationally expensive for multi-label considerations  where m  is 

total number of labels available and n is number of labels attached to the document). We 
changed the definition of error, equation (5), in Algorithm 2 to follow a pairwise cost 
maximisation system. We train using the labels that give us the maximum combined 
error. This can be found using an  dynamic programming algorithm. We can 
construct a matrix, A , where columns represent predicted nodes and rows represent true 
nodes. For each cell, we place the cost value from the corresponding predicted node and 
column node. Then we can create another matrix,  and copy row 1 from the first 
matrix. Now at each successive row, we chose a node that gives maximises cost that is in 
our not used yet list, 

( ( )nO m

2( )O n

B

{ }[ ][ ] [ ][ ]j ∈+ k L B i j B max [ ]i[ ][ 1]= −i A i kL. . At the end, we choose 
the sequence that gives the maximum value. Looking back at Figure 1(b), pairwise 
maximum distance will produce a value of 8. We call algorithm resulting from these 
modifications batch MultiHieron. 

5 Experimentation 

We used two datasets to test our algorithms, the ASRS flight anomaly database and the 
OntoNews corpus. Both datasets have the property of being hierarchical and multi-label. 
Table 1 shows the properties of both of these datasets. They are similar; ASRS has 2.71 
average labels per instance while Ontonews shows 2.95 and about 20% of the instances 
in both sets only have one label. These datasets heavily contrast in that ASRS database 
documents, written by flight attendants, pilots, mechanics, etc., are very chaotic and free 
form, while news articles, written by professional journalists, are objective and 
structured. In describing both datasets, we use the same naming convention to refer to 
specific labels. The root of the hierarchy is taken for granted and not explicitly stated. 
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Our convention is ‘level 1 node: level 2 node: ...: level n  node’ where n  is the distance 
from the root to the label. 
Table 1 ASRS database and OntoNews corpus 

 ASRS OntoNews 

Training instances 20,000 2,400 
Testing instances 10,000 1,076 
Features per instance 3,814 13,085 
Minimum labels per instance 1 1 
Maximum labels per instance 10 12 
Average labels per instance 2.71 2.95 
Number of SL training instances 3,961 667 
Maximum depth of hierarchy 3 9 
Number of distinct document labels 55 288 

5.1 ASRS anomaly reports dataset 

The ASRS flight anomaly database is a repository of voluntary, confidential safety 
information provided by aviation personnel of all ranks, including pilots, controllers, 
mechanics, flight attendants and dispatchers. The database includes almost 150,000 
incident reports submitted over more than 30 years. It has two major characteristics that 
distinguish it from other datasets: a document may have multiple anomalies (multi-labels) 
and each label belongs in a structured hierarchy. The difficulties associated with 
categorising the documents as highly unstructured free form texts was addressed 
previously, however, they lost a significant amount of highly relevant information by 
neglecting the underlying hierarchical structure of the categorisation set. The ASRS 
database has 13 major classes, which are fairly general observations such as ‘inflight 
encounter’ or ‘conflict’, followed by 55 subclasses, which are much more specific. Figure 
2 shows all 13 major classes and six of the 55 subclasses. A report might be labeled as 
both ‘inflight encounter: weather’ and ‘cabin event: passenger misconduct’ if, say, it was 
a report about a passenger acting particularly angrily about the weather disturbing his 
flight. 

Figure 2 Subset of ASRS database hierarchy 

 

Note: Out of 55 third level nodes, six are shown. 
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In experimentation, a subset of the documents was chosen at random and feature vectors 
were generated using the tf-idf system. These anomaly reports were extremely noisy and 
full of complex acronyms, typos and abbreviations. Acronyms were expanded using 
PLADS (Barrientos et al., 2007) and case was ignored. Our feature space has been 
restricted to 3,814 distinct words which were chosen by information gain analysis. 

5.2 OntoNews corpus 

The OntoNews corpus is a collection of 290 annotated news reports. Annotations are 
made by marking the beginning and end of a target word or phrase. This corpus has been 
previously been the focus of study with Hieron (Maynard et al., 2006; Li and Bontcheva, 
2007). These were annotated using the Proton ontology. The Proton ontology is designed 
to capture most high-level semantic concepts. Concepts begin with a root node ‘entity’ 
followed by second level ‘happening’, ‘abstract’ and ‘object’. As levels get deeper, 
concepts get more and more narrow, eventually getting specific with instance labels like 
‘beach’, ‘quarter’ and ‘stock exchange’. Take this example sentence pulled from one of 
the reports: ‘planes’ flying low can pick out targets, including tanks and whatever the 
‘Taliban’ has left in terms of military hardware. Planes and Taliban are labelled objects. 
Planes is labelled as ‘entity: object: vehicle’ and Taliban as ‘entity: object: agent: group: 
organisation : religious organisation’. 

Because there are only 290 documents and each document has a large number of 
labels, we instead use the paragraphs of each document as our instance. Each ASRS 
anomaly report is about a paragraph long so this creates a similar dataset. We generate  
tf-idf vectors for each paragraph and treat all annotations as labels. For example, in the 
sentence above, ‘entity: object: vehicle’ and ‘entity: object: agent: group: organisation: 
religious organisation’ would be labels for that sentence. As Table 1 shows, the dataset 
was divided into 2,400 training instances and 1,076 test instances. No restriction on the 
number of tokens was made. All 13,085 distinct words in the entire corpus were used. 

5.3 Experimental set-up 

There are two methods to test prediction accuracy. We can test with knowledge of the 
amount of predictions we need using a truncation method of result comparison. If a test 
document has two labels attached to it, we compare the top two predictions. Without 
knowledge of the number of classes, we need to predict, a threshold-based method 
generates the best list of prediction candidates. In both systems, we pass an instance x  
and get back a list of all labels and their corresponding weights generated for that 
instance (z). We then normalise these weights . Finally, we call our threshold, T, the 
point that immediately passes the sum of all true weights. 

i

ˆ(z)

pt

T
∈

≤∑
p

p  (11) 

Machine learning algorithm performance historically employs flat metrics. Precision is a 
classification metric that reports the amount of correct documents that were retrieved. 
Recall reports the correctness of the classifications. If we predict every possible 
document choice, then we would have 100% precision, but 0% recall. F-measure 
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combines precision and recall by using the weighted harmonic mean of the two values. 
Accuracy is the ratio of correct cases to all possible cases. 

In addition to at permanence metrics, we use a hierarchical performance metric called 
BDM (Maynard et al., 2006). It is defined as follows: given key node K and response 
node R , BDM is computed as 

/ 0( , )
/ 0 / 2 / 3

B CPBDM K
B CP DPK DP

∗
=

∗ + +
R n

R
R n n R n

 (12) 

where 

• BR (branching factor) is the average number of branches between the most specific 
common abstraction (MSCA) and the key node and response node normalized by 
average branching factor for the entire hierarchy. 

• CP is the shortest path length from root node to MSCA. 

• DPK(R) is the shortest path from MSCA to K(R). 

• n0 is the average chain length of the whole hierarchy. 

• n2 is the average length of all chains containing K from root. 

• n3 is the average length of all chains containing R from root. 

Augmented precision [AP, equation (13)] and recall [AR, equation (14)] gives a better 
overall picture of hierarchical algorithm performance. This accounts for proximity to the 
true value in the hierarchy and structure of the hierarchy. In flat classification, we assign 
a binary value to each prediction. That is to say, it is either correct, in which case we 
assign a value of 1, or it is not, assign a value of 0. In the hierarchical case, metrics like 
these allow us to better see what is going on inside the system as it learns. BDM will still 
give a value of 1 if correct, but also return a real number < 1 that takes into account the 
dynamics of the tree and the location of correct and predicted values on an error. For 
example, BDM calculation for graph 1 in Figure 1(a) is as follows. Our ,  

, 
1.43B =R

2CP = 1DPK = , , 1DP =R 0 3=n , 2 1=n  and 3 1=n . This gives a BDM of 0.32, 
according to equation (12). In graph 2, we have a different CP = 1, DPK = 2 and 

, therefore BDM is 0.11. 2DP =R

BDMAP
BDM FP

=
+

 (13) 

BDMA
BDM FN

=
+

R  (14) 

5.4 Results 

In the following results, we present values generated using online Hieron applied to 
datasets with SL and serial transformation, online MultiHieron and batch MultiHieron. 
The batch Hieron algorithm performed worse than online Hieron in all cases, so results 
are not presented. The truncation method serves as an easy to understand performance 
base. Table 2 shows values for F-measure and accuracy over all datasets. For each label, 
precision and recall values were generated. If target label was predicted and it was 
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correct, that counts as a true positive for target label, else a false positive for the label. If 
it was not predicted but it was supposed to be, this is a false negative. If there are n  
labels in total and a document have three labels. There are three positives and n  – 3 
negatives. 
Table 2 Performance comparison of Hieron (SL and serial), MultiHieron and batch 

MultiHieron 

 Hieron-SL Hieron-serial MultiHieron Batch MultiHieron 
ASRS F-measure 0.346 0.344 0.495 0.501 
ASRS accuracy 93.5 93.5 95.0 95.4 
OntoNews F-measure 0.186 0.222 0.398 0.463 
OntoNews accuracy 96.7 96.8 97.5 97.8 

We vary the threshold, T, from 0 to 1 in 0.01 increments. T distinguishes positive 
predictions from negative predictions. We can use this to calculate a precision/recall 
curve. At each point in the graph, if we chose that corresponding T value, we get the 
given precision and recall. Figure 3(a) shows us such a curve for all algorithms on the 
ASRS dataset. Let us examine the graph by looking at the points where recall is 0.6. 
Precision is 0.35 for batch MultiHieron, 0.35 for MultiHieron, 0.15 for Hieron-serial and 
0.07 for Hieron-SL. We can conclude that the MultiHieron does a significantly better job 
at classifying documents in this database. Compare with OntoNews, our base set, in 
Figure 3(b) where a similar behaviour is exhibited. At recall of 0.4, batch MultiHieron 
has a precision of 0.48, MultiHieron has precision of 0.7 while Hieron-single and  
Hieron-SL bottom out to 0.02. 

Figure 3 Precision versus recall – at metric for performance, (a) ASRS database (b) OntoNews 
corpus (see online version for colours) 

 
(a) 
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Figure 3 Precision versus recall – at metric for performance, (a) ASRS database (b) OntoNews 
corpus (continued) (see online version for colours) 

 
(b) 

Figure 4 Augmented precision versus recall as a hierarchical measure for performance, (a) ASRS 
database (b) OntoNews corpus (see online version for colours) 

 
(a) 
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Figure 4 Augmented precision versus recall as a hierarchical measure for performance, (a) ASRS 
database (b) OntoNews corpus (continued) (see online version for colours) 

 
(b) 

We now generate an augmented precision versus recall curves using hierarchical 
performance metric BDM. Figure 4(a) gives a dramatic less distance between the two 
curves. This is in part due to the flatness of the tree. This hierarchical measure gives error 
values in the range [0, 1] instead of the binary values given in ordinary classification 
metrics. At an augmented recall of 0.6 in the curve, batch MultiHieron gives augmented 
precision 0.38, MultiHeiron 0.36, Hieron-serial 0.3 and Hieron-SL 0.2. Batch 
MultiHieron is more suited to the task of multi-label hierarchical learning according on 
the ASRS database. In the OntoNews dataset shown in Figure 4(b), the margin is even 
wider. At augmented recall of 0.6, batch MultiHieron gives an augmented precision of 
0.44 and MultiHieron has augmented precision of 0.48 while Hieron-serial and  
Hieron-SL comes in way lower with augmented precision. 

MultiHieron showed a speedup over Hieron using serial training shown in Table 3. 
Serial training with multiple labels on the original Hieron algorithm was a multiple step 
process, with the majority of time spent calculating all of the possible prediction paths. 
With MultiHieron, only one prediction calculation need be made for each document, 
therefore the speedup is proportional to the average number of labels per document. The 
SL transformed dataset contains significantly fewer instances than the original dataset 
(about 20% of ASRS was SL), therefore its training time is drastically reduced. Testing 
uses the exact same algorithms and data structures because the underlying prediction 
model for the algorithm was not changed, therefore testing speed is the same. Our base 
for training time will be MultiHieron, 71.8s, as we do one single weight update per 
document. Hieron on the SL documents only uses 20% of our dataset for training, which 
corresponds to an approximate 20% speedup to 13.0 seconds. Hieron training serially 
with all documents takes significantly longer – 174.1 seconds. This difference 
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corresponds to the average 2.7 labels per document, seen in Table 1. Batch MultiHieron 
takes three seconds longer because of the cost of calculating maximum pairwise cost. 
Table 3 Timing of Hieron (SL and Serial), MultiHieron and batch MultiHieron 

 Hieron-SL Hieron-serial MultiHieron Batch MultiHieron 

ASRS training 13.0s 174.1s 71.8s 74.1s 
ASRS testing 54.5s 53.6s 53.6s 53.7s 
OntoNews training 19.1s 287.3s 105.1s 109.4s 
OntoNews testing 91.2s 91.7s 92.3s 94.2s 

6 Conclusions and future work 

We have presented a more generalised large margin, multi-class, hierarchical perceptron 
algorithm. This new algorithm preserves all of the properties of original Hieron algorithm 
and uses the same principles to perform multi-label learning. 

We used ASRS and OntoNews datasets for experimentation. The ASRS flight 
anomaly database posed two unique problems. First, the anomaly reports could have 
more than one label. Second, labels belong to a structured hierarchy. We addressed these 
problems with the MultiHieron algorithm. MultiHieron showed improvement in both 
performance and accuracy over Hieron in multi-label learning over two datasets. 

In the future, we can further this research with more appropriate feature extraction 
techniques. Little work has been done in hierarchical importance of features.  
Semantic-based feature reduction can greatly improve performance of classifiers. 
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